SOLID WASTE MANAGEMENT

(Professional Elective-1)

Course Code: 19CE2152

	I Semester	
\mathbf{L}	Р	С
3	0	3

Prerequisite: Environmental Engineering

Course Outcomes:

At the end of the course, the student will be able to:

- CO1 Discuss about Regulations of various Solid Wastes.
- CO2 Describe about various fundamentals of Solid Waste Management.
- CO3 Illustrate various aspects of Environmental Risk Assessment.
- CO4 Explain chemical and physicochemical processes of Solid Waste.
- CO5 Illustrate Biological Treatment of Wastes and Land Fills.

UNIT-I:

(10 Lectures)

RELEVANT REGULATIONS

Municipal solid waste (management and handling) rules; hazardous waste (management and handling) rules; biomedical waste handling rules; fly ash rules; recycled plastics usage rules; batteries (management and handling) rules

Learning outcomes:

1.Classifies Rules for Municipal Solid Waste and Hazardous Waste Treatment/Disposal(L2)

2. Explain the rules of recycled plastics usage(L2)

3.Illustrates the rules of management and handling of Municipal Solid Waste(L4)

UNIT-II:

(10 Lectures)

MUNICIPAL SOLID WASTE MANAGEMENT – FUNDAMENTALS

Sources; composition; generation rates; collection of waste; Segregation, transfer and transport of waste; treatment and disposal options

Hazardous Waste Management – Fundamentals Characterization of waste; compatibility and flammability of chemicals; fate and transport of chemicals; health effects

Learning outcomes:

- 1. Explain treatment and disposal options of solid waste(L2)
- 1.Illustrates the fundamentals of Municipal Solid Waste(L4)

2. Illustrates the fundamentals of Hazardous Waste Management (L4)

UNIT-III:

(10 Lectures)

RADIOACTIVE WASTE MANAGEMENT – FUNDAMENTALS

Sources, measures and health effects; nuclear power plants and fuel production; waste generation from nuclear power plants; disposal options

Environmental Risk Assessment Defining risk and environmental risk; methods of risk assessment; case studies

Learning outcomes:

1. Explain the waste generation from nuclear power plants(L2)

2. Illustrates the fundamentals of Radioactive Waste Management (L4)

3. Assesses the Environmental Risk associated with various wastes(L6)

UNIT-IV: (10 Lectures) PHYSICOCHEMICAL TREATMENT OF SOLID AND HAZARDOUS WASTE

Chemical treatment processes for MSW (combustion, stabilization and solidification of hazardous wastes); physicochemical processes for hazardous wastes treatment (soil vapour extraction, air stripping, chemical oxidation); ground water contamination and remediation

Learning outcomes:

1. Explain about physicochemical processes for Hazardous Wastes(L2)

2. Elaborates groundwater contamination and remediation(L3)

3. Illustrate Chemical Treatment processes for Municipal Solid Waste(L4)

UNIT-V:

(10 Lectures)

BIOLOGICAL TREATMENT OF SOLID AND HAZARDOUS WASTE

Composting; bioreactors; anaerobic decomposition of solid waste; principles of biodegradation of toxic waste; inhibition; co-metabolism; oxidative and reductive processes; slurry phase bioreactor; in-situ remediation

Landfill design Landfill design for solid and hazardous wastes; leachate collection and removal; landfill covers; incineration

Learning outcomes:

1. Plans a process for biological treatment of Solid and Hazardous Waste(L1)

2. Explain leachate collection and removal(L2)

3. Designs a Land fill for Solid and Hazardous Waste Disposal(L5)

Text Books:

1. John Pichtel, *Waste Management Practices*, CRC Press, Taylor and Francis Group 2005.

2. LaGrega, M.D. Buckingham, P.L. and Evans, J.C., *Hazardous Waste Management*, McGraw Hill International Editions, New York, 1994.

References:

1. Richard J. Watts, *Hazardous Wastes - Sources*, Pathways, Receptors, John Wiley and Sons, New York, 1997.